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P ( I ~ I )  = 

Pr (~o, n-Oeo)= 1 - - -  

~1 - r  z 
n ( l _ r  cos2c0,  0 < ~ < n  (11) 

2 sin-1 I V  (1 +r )  sinZ ~0 ] 
i :-;r c~2~0J ' 

0 < ~ 0 < n / 2 .  (12) 

Discussion of the results 

The functional dependence of Pr(o~o,n-Oeo) on ~0 is 
shown in Fig. 1 for different values of r (which is a meas- 
ure of the type-II degree of centrosymmetry). It is in- 
teresting to see that even when 50% of the atoms in the 
unit cell have a centrosymmetric configuration (i.e. 
r~0 .5 )  the distribution of the phase angles is much 
closer to the distribution expected for the ideally non- 
centrosymmetric case than for the ideally centrosym- 
metric case. It is useful to note that though Pr(c~o, n -  C~o) 
for the type-I case is a function of (sin 0)/2 ( =  S, say), 
it is independent of S for the type-II case considered 
here since r is practically a constant for a given crystal. 

It would be interesting to make a comparative study 
of the variation of Pr(c~o, n - e 0 )  as a function of c~0 for 
typical non-centrosymmetric crystals with type-I and 
type-II degrees of centrosymmetry. We shall consider, 
for example, a non-centrosymmetric crystal with type-I 
degree of centrosymmetry having ([Ar[)=0.1 A and 
a non-centrosymmetric crystal with type-II degree of 

centrosymmetry with r = 0.5. Since Pr(ao, 7r- ~o) for the 
former is a function of S, we shall set S = 0 . 4  A -1 
which is a typical value for Cu Ka radiation. The rele- 
vant curves are shown in Fig. 2. It is seen that while 
for the type-II case about 55% of the reflexions have 
phases in the interval 30 ° to 150 ° (whatever the value 
of S), for the type-I case only about 20% of the 
reflections (for S = 0 . 4  A -1 and ( IAr l )=0"l  A) have 
phases in the interval 30 ° and 150 ° . Thus, under the 
conditions stated above, the type-I case would be more 
difficult to refine than the type-II case. 

One of the authors (V. P.) thanks the Council of 
Scientific and Industrial Research, New Delhi, India 
for financial assistance. 
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General Theory of Coincidence-Site Lattices, Reduced 0-Lattices and Complete 
Pattern-Shift Lattices in Arbitrary Crystals 
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The definition of a lattice and its superlattice is given algebraically. A coincidence site lattice (CSL) is 
defined as an intersection lattice of any two crystal lattices, and a complete pattern-shift lattice (DSCL) 
as the set theoretically smallest lattice containing both crystal lattices as superlattices. In the case where 
the two lattices are related by a non-singular matrix (having non-zero determinant), the so-called 
0-lattice may be generated from the two crystal lattices. Any translation of the 0-1attice by all the vectors 
of one of the crystal lattices forms a lattice, i.e. a reduced 0-lattice. As a result of the theory of groups 
and numbers, the reduced 0-lattice (abbreviated to ROL) is homomorphic to the DSCL. It is shown that 
the factor group of all cosets of lattice 1 in the DSCL (in the ROL) is isomorphic with the factor group of all 
cosets of the CSL in lattice 2 (in the 0-lattice). The volume of a unit cell is derived for all the lattices gener- 
ated by the two crystal lattices. Secondly, the reciprocal of a lattice is introduced and the reciprocity 
between the CSL and the DSCL determined by the reciprocals of the two crystal lattices is shown as a 
special case of a theorem mentioned about modules over a ring. Finally a complete diagram of rela- 
tionships between b-lattices and 0-lattices for direct lattices and reciprocal lattices is given. 

Introduction 

Since Bollman's 0-lattice theory (Bollmann, 1967 a, b, 
1970; Bollmann & Perry 1969; Warrington & Boll- 

mann, 1972) was derived, many theoretical studies of 
the coincidence-site lattice (CSL) and the complete 
pattern-shift lattice (DSCL) have been made. In 
particular, Grimmer has recently developed a general 
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theory of the relationship between the CSL and the 
DSCL (Grimmer, Bollmann & Warrington, 1974; 
Grimmer, 1974). 

In this paper we give an explicit formulation of the 
CSL, the DSCL, the 0-lattice and the reduced 0-lattice. 
We regard a lattice as a commutative group. Then the 
theory of groups is applicable to the lattices and in 
addition, the theory of numbers is another useful tool 
for deriving the volume of their unit cell s , when one of 
the crystal lattices is a superlattice of the other. 

Throughout this work, lattices 1 and 2 can be as- 
sociated with arbitrary crystals as long as the 0-lattice 
and the R0L are taken into account. However, in the 
latter case the two crystals are related by a matrix with 
non-zero determinant. For simplicity we assume that 
the two crystal lattices are related by a non-singular 
matrix A, unless otherwise mentioned. All rotation 
matrices are naturally non-singular. 

This paper is composed of two parts. Part I deals 
with direct lattices and Part II with reciprocals and 
relationships between direct lattices and their recip- 
rocals. 

If B is commutative with respect to multiplication, ring 
B is called a commutative ring. Let B be a commutative 
ring. A module over B, or a B-module M is a commu- 
tative group, usually written additively, together with 
an operation of B on M such that, for all a, b in B and 
x,y in M we have ( a + b ) x = a x + b x  and a(x+y)= 
ax + ay (Lang, 1965). 

If any element of a B-module M is expressed by a 
unique B-coefficient linear combination of finite 
elements suitably chosen in M, B-module M is called 
finite dimensional, and the number of elements is the 
dimension of M. The set of the elements is a basis of 
M; in this case in particular, it is a finite basis. 

Any commutative group is a Z-module, where Z is a 
set of all integers; then Z is a commutative ring. 

The following definition of a lattice is obtained: 

Definition 1. A lattice is a Z-module with a finite basis. 
In crystallography, the dimension of a lattice is equal 
to or less than 3. 

We can also define a superlattice using algebraic 
terminology. 

PART I 

1.1 The definition of a lattice and formulations of CSL, 
DSCL, 0-lattice and R0L 

We denote in this paper: 

A~: lattice 1 with a basis {el, e2,e3} 
A2: lattice 2 with a basis {ft,fz, fa} such that fi =Aei, 

where A is a non-singular matrix (having non-zero 
determinant) 

Ac: CSL of A1 and A2 
A0: 0-lattice of A1 and A2 
AR: R0L of A1 and A2 
Ao: DSCL of A1 and AE. 

Each lattice A is the set of all integer coefficient 
linear combinations of its basis. Then lattice A can be 
considered to have a commutative group structure.* 
We also use the same notation A to describe this group. 

Now we introduce a mathematical term 'B-module' 
in order to define a lattice in the most useful way: A 
ring B is a set, together with two laws of composition 
called multiplication and addition respectively, and 
written as a product and as a sum respectively, satis- 
fying the following conditions: 

1. With respect to addition, B is a commutative 
group. 

2. The multiplication is associative, and has a unit 
element. 

3. For all x,y ,z  in B we have ( x + y ) z = x .  z + y .  z 
and z(x + y ) = z  . x + z . y. 

* A group G is commutative, if x.y=y.x  for any two ele- 
ments x, y in G. In this case, the notation x+y is customarily 
used instead of x.y. 

Definition 2. A superlattice of a lattice is a submodule]" 
of the Z-module associated with the lattice. 

It is notable concerning definitions 1 and 2 that two 
lattices are identical if they are brought completely 
into coincidence by a translation, since every point of a 
lattice is identified by its position vector. 

The intersection of lattices A1 and A2 (Ax N A2) is 
always a Z-module.:l: Then Aa N Az is a lattice, which 
is a coincidence site lattice of A~ and Az, written as Ao 
The sum of lattices Ax and AE (A~ +Az)§ is also a Z- 
module. The two newly defined lattices have the fol- 
lowing nature. 

Theorem 1. (i) Lattice Ac is the largest lattice contained 
in both Ax and A2. (ii) Lattice A~+Az is the smallest 
lattice containing both A~ and Az. Let A and A' be 
lattices such that A contains A', i.e. A D A'. A is said to 
be larger than A' and A' smaller than A.] 

Proof. (i) Let Ac be a lattice contained in A1 and Az. 
Then, Ac is contained in Ac=A1 N Az. Therefore, Ac is 
the largest among the lattices contained in A1 and A2. 
(ii) Let A be the smallest lattice containing A1 and Az. 
Since A~=A~+{O}cAI+Az  and Az={O}+A2cA~+ 
Az, then A~+A2 is a lattice containing A1 and Av 
Hence A c AI + A2. 

Next, we prove that A p A l  +A2. 

Ax+Az={  ~ mie~+n~f~; m~,ni~Z}. 
i 

"j" A submodule N of a B-module is an additive subgroup 
such that BNc N. 

It is possible that the intersection of the lattices is empty. 
However, this disadvantage is easily removed. In fact, the 
intersection has at least one point which is a unit vector for the 
law of addition, i.e. a zero-vector. 

§ At+A2 is the set of vectors xl+x2 for all xi in A~. 
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The definition of A says that 

e~At  = A and fi6Az ~ A , 
from which 

m~ei + n~f~A,  
i 

since A is a Z-module. Thus 

A ~ A I + A 2  
is proved. 

If  a grain boundary is nearly a coincidence boundary 
and a particular atomic configuration is repeated along 
the boundary, only certain line defects can occur in it. 
The line defects are called grain-boundary dislocations, 
the Burgers vectors of which generate a lattice, the 
smallest lattice containing At and Az, called the DSCL 
and here denoted by Ao. According to theorem 1, 
Ao is the lattice At+A2.  

Lattices A0 and AR were first introduced by Bollmann 
(1967 a, b, 69). From his definition, the 0-lattice and 
the R0L are expressed as follows" 

A0={x;  ( I - A - ' ) x E A t } *  

where I is the unit matrix, and 

ARt=Ao+Ai  for i = 1 , 2 .  

which is the set of all position vectors generated from 
all translations of A0 by any vector in A~. The definition 
of  A0 admits that A0 contains Ac as a superlattice. 
Group theory is sufficient in Part I. The notion of 
module plays an important role mainly in Part II. 

1.2 The homomorphism of the R0L into the DSCL 

We give the relationship of the R0L to the DSCL. AR~ 
is taken in this section as an ROL. 

Theorem 2. AR~ is homomorphic1" to a subgroup of Ao. 
The homomorphism of AR~ into Ao is given by AT, 
where 

T = I _ A  -1 

Proof. From the definition of ARa we have: 

A ~  = A 0 +  ~ Ze~ 
i 

(1) 

* Bollmann (1970) defined the 0-lattice as a set of x such that 
(I-A-l)xeA1 and ( I - A - 1 ) x ¢ 0 .  

He excluded trivial 0-points (e.g. points on an axis of rotation). 
In this paper, A0 is defined without the condition (I-A-~)x 4: 0. 
Therefore, Ac is always contained in A0 even if the determinant 
of matrix ( I - A -  ~) is zero. 

Furthermore, A0 is a Z-module. 
In fact, T= I -A-~  is a homomorphism. The inverse image 

of a B-module is a B-module if a mapping is a homomorphism. 
A0 is the inverse image of homomorphism T of a sub-module 
of Z-module A~ ; i.e. A~ itself, a lattice plane of A~, a lattice line 
of A~ or a lattice point {0} of Ax according to rank (7") = 3, 2, 1 
or 0. 

I" A homomorphism, f, of a group G into another G" is a 
mapping such thatf(x, y) =f(x). f(y) for all x,y in G, in the case 
where G is called homomorphic to G" (under a homomorphism 
f). 

where 
Z e , =  { ~ n,e,; ni in Z} .  

l l 

Operating the linear mapping AT on equation (1), we 
find: 

A TAR1 = A TAo + ~ ZA Te~. 
g 

Since 

and 

then 

ATAo ~ A( ~ Ze, )=  ~ Zft~ 
[ i 

A Te~ = A ( I -  A - 1)e~ = f~ - e t ,  

ATAR~ c o ~ (Ze,+ Z f~ )=A,  . 
i 

Following Bollmann's (1970) notation, the DSCL 
is lattice A (z-sc) of all d (z-sc) vectors. All the transla- 
tions of d (z-sc) keep a periodic-pattern configuration 
unchanged. According to the theorem, a translation of 
the primary 0-point, which is a coincidence site, in- 
volves a translation of lattice 2, ~m,e~ +n,f, ,  to con- 

serve the elements of the pattern. 

1.3 Volumes of unit cells for the DSCL and the R0L 

The following theorems establish a more concrete com- 
parison between the DSCL and the ROL. In this section 
we assume that matrix A is unimodular, that is, the 
determinant of A is 1 or - 1 .  A homomorphism of a 
group G into another G', is called an isomorphism if 
the homomorphism is bijective, i.e. one-to-one. In this 
case, we say that G is isomorphic to G' and we can 
identify G with G' as a group. The existence of an iso- 
morphism between G and G' is denoted by G% G'. 

If Gt is a normal subgroup§ of group G, the set of all 
cosets of G1 in G is a group which is called the factor 
group of G and denoted by G/Gt. Any subgroup of a 
commutative group is normal. Then a factor group is 
always possible to be made with a lattice and its super- 
lattice. 

Theorem 3 
(i) Ao/a t  ~= Az/Ac 

(ii) ARt~At ~ Ao/Ac 

Proof. (i) From the isomorphism theoremll well known 
in group theory, the factor group Ao/At=(AI+Az) /A1  
is isomorphic to Az/At N A2, from which 

AD/A1% A2/Ac . 
(ii) Similarly, 

AR1/AI=(Ao +At) /At  ~ Ao/At N Ao . 

:I: Subgroup G2 of group Gx is denoted by G2 ~ Gx. 
{} Subgroup G~ is normal, when xGt = G~x for all elements 

x inG.  
II P. 18 in Lang (1965) or Theorem 2.4.1 in Hall (1959). 
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Let x be an element of Ac=A~ N A 2. Then, 

Tx = x -  A - ~x~A1. 

Hence x~A0 and x~At N A0. 
Conversely, let x' be an element of At tq A0. Then, 

x ' - A - I x ' ~ A 1 ,  
from which 

A-tx'~A~ and so x'~AA~--Az. 

Therefore, we see that Ac--At ~ A0. Then 

AR1/At ~- Ao/Ac . 

As a corollary we take the following: 

Corollary 
Ac = At N Ao = A2  0 Ao • 

Proof. The first equality has been shown in the proof of 
theorem 3. Here, the proof will be given for the other. 
From Ac = At N A2 = A~ N A0, we find: 

Ac=A2 and Ac=Ao.  

Then Ac = A2 N Ao. 
Conversely, if we take any x in A2 tq A0, then 

x -  A-~x~A~ and x~Az. 
From x~A, 
we obtain A-~x~At. 
Thus x = ( x -  A - ix) + A - tx~At. 
The corollary is therefore proved. 

Theorem 3 says that factor group AD/At (or AR/A~) 
is identical with factor group A2/Ac (or Ao/Ac) which 
is composed of all cosets of Ac in A2 (or A0). AD/A~ is 
expressed by all the representatives of cosets or equiv- 
alence classes (Bollmann, 1970) of AD in the unit cell 
of lattice 1. This will also be so for AR/At  

• ! " 

Let A~ be a lattice, Aa a superlattme (or sublattice) of 
A~ and V,, V B the volumes of their corresponding unit 
cells. We denote the number of elements in a group G 
by ord (G). 

Theorem 4 
VB/V~= ord (AJ,4B) 

where A,/A B is the factor group of all cosets of Aa. 
Proof. From a theorem in the theory of numbers 
(Takagi, 1958), the volume of a parallelepiped built up 
with lattice sites at its vertices is equal to the number of 
lattice sites in it.* Then we find that the volume of the 
unit cell of superlattice Aa is a multiple of V, and the 
number of lattice sites of A, in the unit cell of A B. The 
lattice sites in the unit cell of A B can be taken as repre- 
sentatives of all cosets in factor group A,/A B. We there- 
fore see that the theorem holds. 

* Special attention must be paid to the expression 'in it'. It 
means that lattice sites on the faces are counted once for a pair 
of opposite faces, ones on the segments once for a set of four 
parallel edges and ones at the vertices once for a set of all the 
eight vertices. 

Values I and a are defined respectively as a ratio Vc 
to Vt and a ratio Vc to V0. 

Proposition 1. Vo=(Z/a)Vt. 

Theorem 4 says that 

Z=ord  (At/Ac) and a=ord(Ao/Ac). 

Therefore, Z and a are positive integers equal to or 
greater than 1.1" If At=A2, then Ac=At  and Z = I .  
Conversely, if Z =  1, then A~=A2. Therefore, 

Proposition 2. Z =  1 is equivalent to At =Az. 

Z and a values have other equivalent definitions, such 
as: S is the reciprocal of the density of common sites 
(Brandon, Ralph, Ranganathan & Wald, 1964) and a 
is the number of lattice sites of A0 in the unit cell of Ao 
namely the number of distinct pattern elements. The 
equivalence of the definitions can be easily seen from 
theorem 3. 

As a direct consequence of theorems 3 and 4, theorem 
5 is derived. 

Theorem 5 
VD=(1/Z)Vt 

E~, = (1/o) V1. 

In the case of (100) 22.61 ° rotation with Z =  13 for 
cubic crystals, a is equal to 2. Then the volume of 
a unit cell for the DSCL is about six times smaller than 
that for the ROL. 

From theorem 5 and the definition of a, we obtain: 

Proposition 3 a = 1 is equivalent to A0 = Ao A0 = At or 
Aal =A1. 

According to proposition 3, a =  1 means that there 
is an equivalence class of 0-points, i.e. an equivalence 
class of zero-vectors. 

Theorem 6 is then obtained. 

Theorem 6 

0) z : =  Vc/Vt= vdvo= Vo/V~,~§ 
(ii) a : =  Vc/Vo = Vt/VR~ . 

It is notable in theorem 6 that the ratio Vo/VR1 is also 
equal to Z, the corresponding lattices of which belong 
to the category of 0-lattices. 

1.4 Transcendental lattice 

We introduce a lattice generated by crystal lattices At 
and A2 and 0-lattice A0. The lattice is called the tran- 
scendental lattice and denoted by A,. The proof of the 
following propositions is given in the Appendix. 

If Ac or A0 is a set consisting of one element, i.e. a zero 
vector, I or tr is defined as infinity. 

:~ The symbol: = means equality by definition (Grimmer 
et al., 1974). 

§ 27= Vo/VR1 is proved by A1/Ac=A1/A1 N Ao_~(AI+Ao)/Ao 
= A R t / A o .  
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Proposition 4 
O) A,:=AI+Az+Ao=AD+Ao=AI+AR2=Az+AR, 

(ii) Ac=Ao f~ Ao=A1 N AR2=A2 N AR1 • 

Proposition 5 
(i) At/AD~AR,/A, or At/AR,~-AD/A, (i=1,2) 

(ii) At/AR, ~- AR2/Ao 
(iii) AjAo~= AD/Ac 
(iv) AJA~2%A~/Ac, AJAR,~_Az/Ac. 

The volume of a unit cell of the transcendental lattice, 
Vt, is found from one of the relations in proposition 5. 

Proposition 6 
Vt=(1/aZ)I~\. 

The transcendental lattice is the coarsest lattice that 
contains not only lattices A~ and A2 but also A0 and 
A ,  as superlattices. 

From the theorems and propositions, we conclude 
the relationship of superlattice and the relationships 
between the DSCL and the CSL depicted in Fig. 1. For 
lattices joined by a segment the lower is a superlattice 
of the upper. For every parallelogram a lattice related 
to lattices A and A' by segments in lower or upper 
position on the parallelogram is respectively the CSL or 
DSCL of lattices A and A'. The value associated with 

^R2t~l 

A I [1] ~] 

each lattice in brackets is the volume of its unit cell if 
V~= 1. The homomorphism between lattices is given 
with an arrow to express the homomorphism relation- 
ship. 

P ~ T H  

2.1 Introduction to part II 

We have introduced a mathematical term 'B-module' in 
§ 1.1. The reciprocal of a B-module is defined, which 
leads to the specification of a reciprocal lattice. The 
CSL, 0-lattice, R0L and DSCL are defined for two 
reciprocal lattices in the same way as for direct lattices. 
We prove a reciprocity between the CSL of direct lat- 
tices and the DSCL of their reciprocal lattices.t 

2.2 Definition of reciprocal lattice 

Let M be a module over a commutative ring B and 
admit a finite basis, say {e:,e2,...,em}. A reciprocal 
module of M is defined as a B-module with a basis 
{fl,f2,...,fro} which is the functional~ such that 

A(ej) =J~j 

or written as <ej,f~>=Jij with Kronecker's delta Jo. 
The reciprocal of M is denoted by M*. 

2.3 Reciprocity between the CSL of direct lattices 
and the DSCL of their reciprocal lattices 

We introduce several theorems without proof (see 
Lang, 1965). 

Theorem 1 
M'~ M*, 

that is, a B-module is isomorphic to its reciprocal. As a 
corollary of theorem 1, we get: 

Corollary 
M~=M ** 

Under this isomorphism, M is usually identified with 
M* *. This identification and the reciprocity in theorem 
1 assert that once we prove a proposition in terms of 
M and M*, the proposition obtained with the inter- 
change of M and M* is also true. 

Theorem 2. Let MI and M2 be submodules of M such 
that 

M~=M2. 
Then 

M ~ M I  . 

Actr4 
(Direct lattices) 

Fig. 1. The explicit representation of relationships between 
b-lattices and 0-lattices. The parallelepiped consists of the 
parallelograms of the CSL and DSCL of two lattices situated 
at the medium vertices of each parallelogram. 

In fact, any functional in M~ is defined on 3//2. If we 
restrict to M1 the domain of the functional, it is a func- 
tional defined on M~. Therefore, we show that M~' = M~ 
if Ml c M2. 

t Grimmer (1974) has given another proof. 
:~ A functional is a linear mapping of M into B. 



64 G E N E R A L  T H E O R Y  OF C O I N C I D E N C E - S I T E  LATTICES 

Let M ;  and M~: be the DSCL and the CSL of the 
reciprocals M~' and M~'. That is: 

* * * * * 
MD=Mi +M2 and M c = M i  f) M~.  

The reciprocals of MD and Mc are denoted by (Mo)* 
and (Mc)*. We shall prove the theorem of reciprocity. 

Theorem 3 (Theorem of reciprocity) 

M;=(Mc)*, (Mo)*=M~ 

Proof. When M~ and Mz are replaced respectively by 
M~' and M~, the former is equivalent to the latter. 
We shall prove that M g =  (Mc)*. 

First, it will be shown that M g c  (Mc)*. 
From the definition of Mc, 

Mc c M~, then (Mc)* ~ M* for i = l, 2. 

Since reciprocal M ;  is the smallest module containing 
M~' and M~', 

M~C(Mc)* 
is proved. 

Secondly, we shall see that (Mc)*C M;.  
Since 

M * c M ; ,  

M~=Mi**D(M~)* f o r i = l , 2  
and 

Mc D (M;)*. 
Therefore 

(Mc)* c M;  . 

Consequently we have shown that 

* ( M ) *  Mo = c • 

As a special case of B-modules, a reciprocity relation- 
ship for lattices is obtained: 

Theorem of reciprocity for lattices 

A;=(Ac)* or ( A D * = A ~ ,  

Theorem 4 admits that A;=(Ac)* or (AD)*=A; is 
true for arbitrary lattices. 

Let A:  be a lattice such that 

A: = { x ' ;  (I-tA-gx '~A;}. 
A;' is defined as a 0-lattice in the reciprocal lattice cor- 
responding to the 0-lattice in the direct lattice. A 
parallelepiped is constructed in the category of the recip- 
rocal lattices based on lattices A~', A~' and Ag in the 
same way as the parallelepiped on Ax, A2 and A0. Another 
parallelepiped is obtained for the reciprocals of the 
direct lattices schematized in Fig. 1. Coincidence 
vertices of the two parallelepipeds in Fig. 2 show the 
reciprocity relationships described in the theorem. 

The author wishes to thank Dr Y. Ishida for his 
encouragement and many helpful discussions during 
the course of this work and for reading the manuscript, 
and Dr T. Ninomiya for valuable advice. He is also 
grateful to Drs K. Fujimoto and T. Imanaka for their 

encouragement. Special acknowledgement is due to the 
Kawasaki Steel Corporation for permission to publish 
this paper. 

A P P E N D I X  

The proof of propositions 4 and 5 is given here. 

Proof of proposition 4 
(i) It is easily shown. 

(ii) AoNAo=(AI+A2)AAo=A~ AAo+AzNAo 
=Ac+Ac=Ac 
A1 N AR2= A1 fl (Ao + Az)= A1 N Ao + Ai fl Az= Ac . 

Similarly, 

Az N ARt = Ac • 

Proof of proposition 5 
The theorem of isomorphism and proposition 4 

asserts (iii) and (iv). To prove (i) it is sufficient to show 
that 

A,=Ao+ARi and Ai=ADAARt. 
A,=(A~ + Az) + (A, + Ao)= AD + AR, . 
AD N AR~=(A~ + A2) N (A~+ Ao)=(A~ N A~+ Az f~ AD 

+A1 f/A0+A2 N Ao=A~+Ac+Ac=Ai.  

^ * 

t~] (Ac)*: 
t 2  * 

(A2I ,[~] 

tl](A 1) =A I 

[zl(AD)*= 

~R2)* [ o ] 
] 

(At)*toz] 

(Reciprocal lattices) 

Fig. 2. Parallelepipeds constructed on A~, A~ and A~, and on 
the reciprocals of Ai, A2 and A0. Coincidence vertices of the 
two parallelepipeds correspond to the lattices in the reciprocity 
relationship. A~ and (Al)" are the same lattices defined as the 
reciprocals of A~ (i= 1,2). The associated value stands for the 
volume of a unit cell of each lattice. 
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Proposition 5 (ii) is deduced from 

At=ARI+AR2 and A0=Aax fl AR 2 , 

which are verified as for (i). 
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Univalent (Monodentate) Substitution on Convex Polyhedra. II. Listing of Cycle Indices 

BY OSVALD KNOP 
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To extend the usefulness of the tabulation of the numbers N of positional isomers [Knop, Barker & 
White (1975). Acta Cryst. A31, 461-472], all the distinct cycle-index polynomials Z on which the 
tabulation is based have been listed in a convenient form. This condensed summary facilitates identi- 
fication of Z-isomorphisms; in turn, N for univalent substitution on many polyhedra not listed previously 
can be evaluated simply by reference to the existing tabulation. 

In part I (Knop, Barker & White, 1975) we presented 
the numbers N of distinct (up to rotation) positional 
isomers obtained by univalent substitution at the ver- 
tices of convex polyhedra; only structureless substi- 
tuents were considered. The tabulation is extensive, 
but naturally it cannot include all non-isomorphic 
polyhedra even for small numbers of vertices V. A user 
of the tables wishing to evaluate N for polyhedra not 
listed in Table 5 of part I would not only have to 
determine the appropriate cycle indices Z, but he 
would have to compute the coefficients of the expanded 
cycle-index polynomials (i.e. the values of N) for the 
compositions of interest, a tedious task. However, ow- 
ing to cycle-index isomorphism the number of distinct 
Z polynomials involved in the tabulations of part I is 
not unduly large, and there is a good chance that the 
set of N to be determined already appears there under 
a different but Z-isomorphic polyhedron, which makes 
fresh computation unnecessary. 

To facilitate identification of additional Z-isomor- 
phisms, over and above those specifically listed in part 
I, a table of all the cycle indices on which the tabulation 
of part I is based, has been compiled. 

Considerable space is saved by introducing the fol- 
lowing notation. An s-product sgsg will be represented 
as a, u.b, v. Each s-product occurring in the cycle indices 

for a particular value of V will be denoted by a capital 
letter (Table 1). The highest-order term s [ (represented 
by A) is always present,]" and so further space is saved 
by omitting A from the letter symbol of Z. For example, 
the Z of a tetrahedron 4-2 of symmetry Td, 

~ ( s  4 + 6 s I +  1 1 8s,s3 + 6s~sl + 3s~), 

is represented by 6B8C6D3E. The s-products denoted 
by the letters are found in Table 1 under V=4. The 
sum of the coefficients associated with the letters, in- 
cluding the coefficient of A, which is always unity, is 
equal to the divisor p(G), in this case 24. 

For economy of space, the table of cycle indices 
(Table 2) is arranged as follows. In the first part (pp. 
3-9) Z polynomials occurring in only a few cases are 
listed in the order of increasing V. The second part 
(pp. 9-16) contains cycle indices having large numbers 
of terms and those involved in considerable numbers 
of Z-isomorphic representations. 

t The term A by itself represents Z(4mh) of the correspond- 
ing polygon of V vertices (cf. part I). 

:I: Table 2 has been deposited with the British Library Lend- 
ing Division as Supplementary Publication No. SUP 31246 
(16 pp., 1 microfiche). Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 
13 White Friars, Chester CH1 1NZ, England. 
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